Engineering of directional emission from photonic-crystal waveguides
نویسندگان
چکیده
منابع مشابه
Highly directional emission from photonic crystal waveguides of subwavelength width.
Recently it has been shown that it is possible to achieve directional emission out of a subwavelength aperture in a periodically corrugated metallic thin film. We report on theoretical and experimental studies of a related phenomenon concerning light emitted from photonic crystal waveguides that are less than a wavelength wide. We find that the termination of the photonic crystal end facets and...
متن کاملDirectional free-space coupling from photonic crystal waveguides.
We present a general approach for coupling a specific mode in a planar photonic crystal (PC) waveguide to a desired free-space mode. We apply this approach to a W1 PC waveguide by introducing small index perturbations to selectively couple a particular transverse mode to an approximately Gaussian, slowly diverging free space mode. This "perturbative photonic crystal waveguide coupler" (PPCWC) e...
متن کاملDispersion engineering of photonic crystal waveguides with ring-shaped holes.
The geometry of photonic crystal waveguides with ring-shaped holes is optimized to minimize dispersion in the slow light regime. We found geometries with a nearly constant group index in excess of 20 over a wavelength range of 8 nm. The origin of the low dispersion is related to the widening of the propagating mode close to the lower band gap edge.
متن کاملNanopillars photonic crystal waveguides.
We present a novel type of a waveguide, which consists of several rows of periodically placed dielectric cylinders. In such a nanopillars photonic crystal waveguide, light confinement is due to the total internal reflection, while guided modes dispersion is strongly affected by waveguide periodicity. Nanopillars waveguide is multimode, where a number of modes is equal to the number of rows buil...
متن کاملPolarization Engineering in Photonic Crystal Waveguides for Spin-Photon Entanglers.
By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide, we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quantum dot (QD) spin coupled to a photonic crystal waveguide (PCW) mode, we demonstrate that the light-matter interaction can be asymmetric, leading to unidirectional emission and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2005
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.1870133